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Abstract

In the last two decades, significant depletion of boundary layer ozone (ozone deple-
tion events, ODEs) has been observed in both Arctic and Antarctic spring. ODEs are
attributed to catalytic destruction by bromine radicals (Br plus BrO), especially during
bromine explosion events (BEs), when high concentrations of BrO periodically occur.5

However, neither the exact source of bromine nor the mechanism for sustaining the
observed high BrO concentrations is completely understood. Here, by considering the
production of sea salt aerosol from snow lying on sea ice during blowing snow events
and the subsequent release of bromine, we successfully simulate the BEs using a
global chemistry transport model. We find that heterogeneous reactions play an im-10

portant role in sustaining a high fraction of the total inorganic bromine as BrO. Modeled
tropospheric BrO columns generally compare well with the tropospheric BrO columns
retrieved from the GOME satellite instrument (Global Ozone Monitoring Experiment).
The additional blowing snow bromine source, identified here, reduces modeled high
latitude lower tropospheric ozone amounts by up to an average 8% in polar spring.15

1 Introduction

Bromine radicals (Br plus BrO) are important atmospheric halogen species which may
regulate ozone concentrations in both the stratosphere and troposphere (World Mete-
orological Organization (WMO), 2003; von Glasow et al., 2004; Salawitch et al., 2005;
Yang et al., 2005) and which also have significant effects on other tropospheric pro-20

cesses such as the sulfur cycle (von Glasow and Crutzen, 2004; Breider et al., 2010)
and mercury oxidation (Holmes et al., 2006; Seigneur and Lohman, 2008). Significant
ozone depletion events (ODES), first observed in the boundary layer in polar spring
(Barrie et al, 1998; Wessel et al., 1998), are attributed to catalytic destruction by halo-
gen radicals, especially during bromine explosion events (BEs, see, e.g., McConnell et25

al., 1992; Fan and Jacob, 1992). However, the mechanism for the bromine release dur-
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ing BEs is not completely clear. Photochemical reactions within the snow pack could
result in bromine release (Foster et al., 2001; Simpson et al., 2005, 2007). Frost flowers
have also been suggested as a potentially important bromine source (Kaleschke et al,
2004; Sander et al., 2006), but are not likely to be a direct source, although when frost
flowers are dispersed into the atmosphere by strong surface winds they could make5

some contribution (Alvarez-Aviles et al., 2008). A recent calculation demonstrates that
the sea salt produced in association with blowing snow events could be a significant
bromine source (Yang et al., 2008), which is consistent with recent in-situ measure-
ments of higher bromide levels in blowing snow in coastal Antarctica (Jones et al.,
2009). Inclusion of this source in the Arctic has a significant effect on tropospheric BrO10

and oxidation (through ozone and OH) (Voulgarakis et al., 2009).
Snow lying on sea ice accumulates sea salt through various pathways. Using mea-

surements of the mean column salinity of snow on young Antarctic sea ice (Massom
et al., 2001) and a parameterization for sea salt aerosol production in blowing snow
events, we have found that the resulting sea salt aerosol production rate (per unit area15

under typical weather conditions) can be more than an order of magnitude larger than
that from the open ocean (Yang et al., 2008). This finding is consistent with observa-
tions of sea salt aerosol magnitude and seasonality (Hall et al., 1998) and also with
the ice-core records (Rankin et al., 2002). Here, by considering the sea salt production
from snow lying on sea ice during blowing snow events and the subsequent bromine20

release, we aim to simulate the BEs. The scheme is evaluated by direct comparisons
with tropospheric BrO columns retrieved from the GOME satellite instrument.

In Sect. 2, we present details of the model scheme for the bromine release and
the additional heterogeneous bromine chemistry as implemented in a global chemi-
cal transport model p-TOMCAT. Section 3 describes the retrieval of tropospheric BrO25

columns from the GOME satellite instrument. Section 4 compares the model and ob-
servations. In Sect. 5 the sensitivity of the model to both snow salinity and the sea salt
bromine depletion factor is explored. Finally, conclusions are reached in Sect. 6.
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2 Model tropospheric BrO

2.1 Basic model information

p-TOMCAT is a chemistry-transport model which has been widely used for tropospheric
chemistry studies. Here it is forced by ECMWF reanalysis data and run at a horizontal
resolution of approximately 5.6◦ with 31 vertical layers up to 10 hpa. Runs are based on5

an earlier model version, which includes bromine chemistry in the troposphere (Yang
et al., 2005). In this study, we include the bromine source from polar sea ice, as
introduced by Yang et al. (2008), in addition to the two sources already included in our
previous studies: open ocean sea salt (Yang et al., 2005) and bromocarbons (Warwick
et al., 2006). For more detailed information about the physical and chemical aspects of10

the model, see related papers by Wang et al. (1999), Savage et al. (2004), O’Connor
et al. (2005), Cook et al. (2007) and O’Brien et al. (2009).

2.2 Main features of the blowing scheme

Snow, lying on sea ice, contains bromine salts. The new bromine source included in
these calculations arises when wind lifts this bromine-containing snow into the atmo-15

sphere. Many of the underlying processes are not included in the base CTM and have
to be either specified or parameterized. Their treatment, described in detail in Yang et
al. (2008), is outlined here in Sects. 2.3 to 2.5.

The scheme requires the spatial and temporal coverage of sea ice. We do not at-
tempt to model this; instead, here we use two sea ice data sets: monthly global sea ice20

(Comiso, 1990, updated 2005) and multiyear sea ice in the Arctic (Kwok, 2004). The
essential features of the subsequent calculation of the bromine flux from above the sea
ice are given in Sect. 2.3. The calculation depends on the rate at which snow parti-
cles are lifted from the surface and subsequent sublimation (which depends on wind
speed, temperature, environmental relative humidity and the age of snow) and the rate25

of release of bromine from the suspended sea salt aerosol (which is obtained from
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observed bromine depletion factors, salinity, etc.). Snow salinity is discussed in more
detail in Sect. 2.4. An important new feature of the model is the inclusion of additional
heterogeneous reactions, which reactivate bromine compounds. These are presented
in Sect. 2.5.

2.3 Bromine emission from blowing snow5

As described in Yang et al. (2008), the bromine release flux (in units of kg Br/m2 s) from
blowing snow sea salt aerosols can be expressed as:

QBr =DFiRa

∑
i

f (di )Qsς
1000

(1)

where Qs is the blowing snow sublimation rate (in units of kg/m2 s) and follows the
approach of Dery and Yau (1999, 2001, 2002). Qs is a complex function of wind speed10

at 10 m, air temperature, environmental relative humidity and snow age (see Eq. (1)
of Yang et al., 2008). DFi are size-dependent bromine depletion factors based on
observations collected by Sander et al. (2003). Ra =0.00233 kg/kg is the Br/Cl mass
ratio in sea salt. ς is the snow particle salinity. f (di ) is the suspended particle probability
density in blowing events which follows a two-parameter gamma probability function15

(Schmidt, 1982). The snow age also affects Qs. In Yang et al. (2008) the sensitivity of
the calculation to two different specified ages (3 and 7 days) was considered. Results
were not very sensitive to this change.

In this calculation, for each grid box containing sea ice, the snow age is given by the
time since precipitation last fell at that location.20

Generally, a large sublimation flux is expected under conditions of low relative hu-
midity and high wind speed and in consequence this leads to high sea salt production
and bromine release. However, as mentioned by Yang et al. (2008), only fine sea salt
with dry diameter <10 µm is treated as a bromine source. Snow salinity has two ef-
fects on the bromine release. First, increased salinity leads directly to an increased25
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bromine source (QBr varies linearly with ς in Eq. (1)). However, salinity also affects the
aerosol size distribution. For example, reducing the snow salinity leads to more sea
salt aerosol of small diameter (<10 µm), which then offsets the direct effect of lower
salinity on the total bromine release. So, the response of bromine release to changing
salinity is non-linear.5

A further factor affecting bromine release is the depletion factor; QBr varies linearly
with DF (see Eq. 1). Here we specify DF as a function of particle size, based on the
dataset compiled by Sander et al. (2003), in order to estimate bromine release from
differently sized sea salt aerosol particles. Bromine depletion in sea salt is related
to acidity and may have significant spatial and temporal variations. Indeed there is10

considerable variation in DF for a given particle size in the Sander et al. (2003) dataset.
Using a fixed DF globally is an important contribution to the overall model uncertainty.
Breider et al. (2010) also used the Sander et al. (2003) dataset in their modeling study.
They took median values, which can be more than a factor of 2 higher than the mean
values that we have used, introducing further uncertainty. We will explore the sensitivity15

of the model to DF in Sect. 5.

2.4 Snow salinity

Many factors influence the supply of ionic salt to snow deposited on the sea ice in-
cluding frost flowers on young sea ice, upwards migration of brine within snow, input
of sea salt aerosols from adjacent leads or polynyas and flooding, etc. Strong surface20

winds in polar regions will redistribute these salty particles, The snow salinity used in
the model is based on the detailed analysis of data reviewed by Massom et al. (2001)
for Antarctic first year sea ice. However, to our knowledge, although there are isolated
measurements in the Arctic, we have not seen a similar collection of snow salinity data
for the Arctic. Of course, scaling-up local or regional observations to the global scale is25

always a significant challenge. To extrapolate Antarctic snow salinity to the Arctic is not
straightforward; there are significant differences in both oceanic and atmospheric en-
vironments. For example, firstly, according to precipitation data (Huffman et al., 2001),
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winter precipitation in the Antarctic (April to September at 60–70◦ S) is about 3.5 times
that of the Arctic (>70◦ N from October to March), implying that the snow salinity in the
Arctic is less diluted. Secondly, the Arctic ocean has large areas of multiyear sea ice.
The snow salinity will be reduced there, as a lower flooding frequency is expected over
the multiyear sea ice compared to first year ice. In this study, we linearly extrapolate the5

Antarctic snow salinity from Massom et al. (2001) to Arctic first year sea ice. Assuming
that there is a similar saline supply to sea ice snow in both polar regions and taking the
N-S snowfall differences discussed above, the Arctic snow salinity on young sea ice
will be about 3.5 times that of the Antarctic. Furthermore, we assume that there is no
sea salt aerosol production from multiyear sea ice; only new ice is considered. Clearly,10

the extrapolation of observed Antarctic salinity to the Arctic is an important assumption
whose impact on modeled bromine we explore in Sect. 5.

2.5 Treatment of reactivation of inactive bromine species

Three heterogeneous reactions on aerosols are introduced in a novel parameterization
to reactivate Br radicals from the HBr reservoir, which is formed in the standard gas15

phase bromine photochemistry.

HBr+HOBr het−→Br2+H2O (R1)

HBr+BrONO2
het−→Br2+HNO3 (R2)

HBr+N2O5
het−→BrNO2+HNO3 (R3)

In the clean troposphere, most of the aerosol, except for fresh sea salt, contains very20

low Br− and the rate of Reactions (R1)–(R3) depends on the supply of each reactant
from the gas phase and their relative abundance on the aerosol surface. We use Reac-
tion (R1) as an example to show how we derive effective heterogeneous reaction rates
in the model. We simply assume there is no net bromine accumulation in the aerosol
and that the reaction occurs instantaneously on the surface. Then, Reaction (R1) can25
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be rewritten into two individual heterogeneous half-reactions by introducing a hypo-
thetical transient reservoir species BrY, which has the same properties as Br2, but only
contains one bromine atom.

HOBr+aerosol→BrY+H2O (R4)

HBr+aerosol→BrY (R5)5

Their rates in general would be given by

R4=γ0(HOBr)υ(HOBr)A[HOBr]/4 (R6)

R5=γ0(HBr)υ(HBr)A[HBr]/4 (R7)

where γ0(HOBr) and γ0(HBr) are the maximum uptake coefficients measured (when the
surface is completely saturated with the second reactant); υ(HOBr) and υ(HBr) are molec-10

ular speeds; and [HOBr] and [HBr] are concentrations of reactant HOBr and HBr. A
(cm2/cm3) is the aerosol surface area density.

Obviously, the rate of the overall reaction is limited by the slower of these two rates
so that, in the model, both half-reaction rates are set to the slower of the two rates.

The uptake coefficients used in this study are γ0(HBr) = 0.2, γ0(HOBr) = 0.02,15

γ0(BrONO2) =0.036 and γ0(N2O5) =0.025. The background aerosol density data are taken
from measurements in the boundary layer (Heintzenberg et al., 2000), in the free tropo-
sphere and stratosphere (Schröder et al., 2002) and Reactions (R1)–(R3) are assumed
to occur on background aerosols when there is no rainfall in a gridbox, otherwise, the
hydrolysis reaction BrONO2 +H2O→HOBr+HNO3 occurs.20

2.6 Model experiments

Table 1 lists the model experiments conducted. The BASE run includes the three major
bromine sources from blowing snow, open ocean sea salt and bromocarbons. The
OCEAN run omits the blowing snow sea salt source. The noHET run is the same as
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BASE but with the heterogeneous Reactions (R1)–(R3) switched off in order to isolate
the effect of heterogeneous recycling on the BrO fraction. The noBr run contains no
bromine chemistry.

In addition, we have run two sensitivity experiments. The 2XDF run is the same as
the BASE run but with doubled sea salt bromine DF just for the blowing-snow source.5

The Arctic1X uses the same snow salinity in the Arctic as in the Antarctic (whereas in
BASE the Arctic salinity is 3.5 times larger, see Sect. 2.4).

For all experiments, the model output frequency is 2 h to ensure a close solar zenith
angle match with the GOME data. All the experiments included a one year spin-up run.

3 Satellite tropospheric BrO retrieval10

The Global Ozone Monitoring Experiment (GOME) (Burrows et al., 1999) is a remote-
sensing instrument observing the sunlight backscattered from the earth in nadir viewing
geometry. Launched in April 1995 aboard the ERS-2 platform, GOME is an ultravio-
let/visible spectrometer measuring in the spectral interval from 240 to 793 nm with a
spectral resolution of 0.2 to 0.4 nm. The GOME pixel size is about 320×40 km2 and15

global coverage is achieved within three days.
In the framework of the ESA TEMIS project (http://www.temis.nl), a tropospheric

BrO column product has been developed based on GOME measurements (data is
available from the authors on request). The tropospheric BrO columns are retrieved in
three steps. First, the BrO absorption is determined from the measured calibrated ra-20

diances using the DOAS method in the wavelength interval from 344.7 to 359 nm (Van
Roozendael et al., 2002). In a second step, the stratospheric component of the signal
is removed by subtracting the stratospheric BrO column, calculated using a strato-
spheric BrO climatology. The stratospheric BrO correction is based on a dynamical
climatology generated from the BASCOE 3D chemical transport model (Theys et al.,25

2009). This climatology explicitly accounts for the impact of atmospheric dynamics and
photochemistry on the stratospheric BrO distribution. In the last step, the tropospheric
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residual is converted to a tropospheric vertical column by applying an air mass factor
to account for the vertical sensitivity of the measurement. In this air mass factor calcu-
lation, a priori information is needed on the surface albedo (Koelemeijer et al., 2003),
the clouds (Koelemeijer et al., 2001) (a cloud screening removes the measurements
with a cloud fraction larger than 0.4) and the shape of the vertical distribution of tropo-5

spheric BrO. The latter profile shape is however largely unknown in the troposphere.
For bright surfaces (snow-ice cover), the air mass factor is weakly dependent on the
shape of the profile and a constant concentration profile in the first kilometre has been
chosen. Over dark surfaces (such as oceans), the measurement sensitivity is strongly
reduced in the boundary layer and we have assumed the tropospheric BrO profile to10

have only a contribution in the free-troposphere (with a bulk located at 6 km altitude).
As a consequence, the resulting tropospheric BrO columns there will underestimate
any BrO amount present in the boundary layer.

The total error on the tropospheric BrO columns is estimated to be about 1–
2×1013 molecules/cm2, when all sources of uncertainties in the retrieval are taken into15

account.

4 Results and analysis

Figure 1 shows a large-scale comparison between the model tropospheric BrO (from
both the BASE and OCEAN runs) and the tropospheric BrO retrieved from the GOME
satellite instrument (as described in Sect. 3), for March and September 1998, respec-20

tively, covering Boreal and Austral spring time. Figure 1 shows that our model success-
fully captures the main features of the distribution of satellite-based tropospheric BrO
in polar region only if the snow-sourced bromine is included. For example, the highest
BrO in the North American sector, along the coast of the Arctic ocean, and the “ring-
like” BrO structure around Antarctic are both well reproduced in the BASE run but are25

not seen in the OCEAN run. Simulated monthly mean daytime tropospheric column
BrO ranges from <0.5×1013 molecules/cm2 in the tropics, where sources are weak
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and removal of inorganic bromine is strong, to >4×1013 molecules/cm2 over polar sea
ice, mainly reflecting the blowing-snow source. Compared with retrieved data, mod-
eled tropospheric BrO is in general lower by ∼1×1013 molecules/cm2, but qualitative
agreement between modeled and retrieved tropospheric BrO is good in polar spring.

In marginal regions between sea ice and the open ocean, such as over the Southern5

Ocean and the North Atlantic ocean where strong surface winds are frequently ob-
served, the simulated tropospheric BrO is larger than the retrieved BrO. Although the
model may overestimate ocean sea salt/Br production in high latitudes under particular
conditions (such as lower water temperature, affecting sea salt production (Mårtensson
et al., 2003), higher ambient air relative humidity RH (>80%), affecting particle size10

and lifetime (Smith et al., 1993), and lower ambient air acidity, affecting bromine re-
lease (Ayers et al., 1999)), the satellite sensor also possibly underestimates marine
boundary layer BrO over such dark surfaces. Over high latitudes in North America,
the modeled BrO is lower than the retrieved BrO in March 1998. However, we have
conducted multi-year simulations which show that elevated BrO, similar to the retrieved15

BrO, can also be predicted (e.g. in 1997 as shown in Fig. 2).
There is also a discrepancy between model and observations in the tropics (see

Fig. 1), where simulated tropospheric BrO is generally lower than the retrieved value.
Lowest BrO is found over tropical land areas and in areas with strong precipitation, such
as over Maritime Continent in September where wet deposition plays an important role20

in wash-out inorganic bromine species. Discrepancies in the tropics, of course, are not
related to our modeled polar emissions but do possibly point to problems with our open
ocean sea salt or halocarbon emissions. However we should also note that the tropical
region is the place where the retrieval error is quite large because of the weaker signals
there and large errors in the air mass factor (AMF).25

Turning from regional to local scales, Fig. 3 shows a detailed comparison between
model and satellite-based results (both the GOME total column and the retrieved tro-
pospheric column) for comparable solar zenith angles (SZA) at Barrow (73◦ N, 157◦ W)
in 1998. Model and retrieved tropospheric BrO correlate significantly (r2 = 0.63) at
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Barrow where frequent BEs are observed. Comparison with GOME data shows that
the model successfully reproduces the bromine explosion event during Julian days 80–
90, but not for Julian days 71–79. One reason why the model fails to reproduce all the
observed events could be that the model surface wind, at the coarse model horizontal
resolution of 5.6◦, is often below the blowing snow threshold wind speed (∼7 m/s, see5

Yang et al. (2008)) while local observed wind speeds at Barrow exceed it. Neverthe-
less, it is clear that inclusion of the snow source leads to a considerable qualitative
improvement in the model performance; modeled BrO is significantly higher and BEs
are reproduced.

Further comparisons with retrieved tropospheric BrO at different sites are shown in10

Fig. 4. Significant correlation is seen at all the Arctic sites (we define the relationship
as significant, if r2 >0.1, at a probability level of p=0.01, meaning a 99% probability of
making a correct statement, with number of degrees of freedom >100). In the South-
ern Hemisphere, significant correlation is also seen over hotspots such as the Weddell
and the Ross seas (Fig. 4g, h) where BrO are elevated, but for inland sites (Fig. 4e, f)15

where no snow-source applies (recall that only sea ice constitutes a bromine source),
the correlation is poor. Noteworthy are several short-term BE episodes that are con-
sistently captured by both measurement and model results. In all cases, we see that
the elevated BrO in polar spring cannot be simulated without including the blowing-
snow source of bromine. Note that in polar regions, extremely high tropospheric BrO20

(>10×1013 molecules/cm2) can be simulated during some very windy days which is
somewhat unrealistic indicating that bromine release could be non-linear with fresh
sea salt (alkalinity) production. For example, higher fresh sea salt supply e.g. over the
Southern Ocean, results in lower sea salt acidity or higher pH (Kerkweg et al., 2008),
and thus could lower bromine release there (Breider et al., 2010).25

The differences in modeled tropospheric column BrO between BASE run and
OCEAN run as shown in Figs. 3 and 4 clearly show the contribution to polar bromine
from the blowing snow. It can be seen that the blowing-snow source leads to a signifi-
cant increase in BrO in spring and a modest increase in autumn. The good agreement
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between model and observations over regions with elevated BrO, especially in the Arc-
tic where blowing-snow is the major source, suggests that the blowing-snow-bromine
may be properly parameterized relative to the sea salt source from the open ocean.
When the heterogeneous Reactions (R1)–(R3) are excluded, BrO is only 30% of the
BASE run value indicating the important role of heterogeneous reactivation in sustain-5

ing a high fraction of radical bromine (BrO+Br) in total gas phase inorganic bromine.
When heterogeneous reactions are included, the mid-day BrO accounts for almost
50% of total inorganic bromine in the boundary layer.

Figure 5a, b shows the zonal mean daily averaged BrO in March and September
of 1998. In the polar boundary layer, the spring daily mean BrO is 1–2 pptv, which is10

consistent with recent in situ measurements in the Antarctic (Saiz-Lopez et al., 2007).
In the Arctic spring, highest BrO is confined to the lower troposphere whereas high BrO
is found throughout the troposphere over Antarctica (and much is of oceanic origin).
During polar autumn, the daily mean value drops significantly, but in the SH, the autumn
daily BrO is still greater than 0.5 pptv, and is significantly larger than the Arctic level of15

∼0.2 pptv, reflecting the larger sea salt production rate from the Southern Ocean.
During polar spring, the snow source plays a dominant role. 70–80% of the Arctic

tropospheric BrO is from the snow source, while in the SH, this figure drops to 50–60%
(Fig. 6). In autumn this source only contributes a few percent, with contributions locally
larger than 10%. Due to transport effects, a significant contribution from the springtime20

snow source can be found in mid-latitudes and over the Antarctic continent.
We have modeled complete removal of ozone locally during intense BEs; however,

most of the time in our integration, mixing within the model boundary layer brings ozone
to the surface maintaining concentrations of order 10 ppbv (Fig. 7). Here, we focus on
the impact on modelled zonal mean ozone. Comparing the BASE run with the OCEAN25

run to determine the net effect of the snow source, we see an important contribution
throughout the high latitude troposphere where a monthly mean ozone difference of
up to 8% is obtained (Fig. 5c, d). This ozone difference reflects ozone loss just due to
blowing snow events and is in addition to ozone losses caused by bromine emitted from

8147

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/8135/2010/acpd-10-8135-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/8135/2010/acpd-10-8135-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 8135–8164, 2010

Snow-sourced
bromine and its

implications for polar
tropospheric ozone

Xin Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

the open ocean sea salt and released from bromocarbons. Comparing the BASE run
with the noBr run, we find that the bromine chemistry in the troposphere reduces mean
tropospheric ozone amounts by 5–30% (Fig. 5e, f), which is consistent with previous
estimates (von Glasow et al., 2004; Yang et al., 2005). In the upper troposphere and
lower stratosphere, significant ozone reductions of ∼10% in the NH and ∼20% in the5

SH are simulated.

5 Model sensitivities

Figure 8 shows the tropospheric BrO column in the 2XDF run (with doubled DF for
snow-Br) in March and September. Compared with the BASE run, tropospheric BrO in-
creases by 80–100% in the Arctic and 60–80% in the Antarctic, respectively. Obviously,10

the almost linear response to DF in the Arctic reflects the dominant snow-Br source due
to the large sea ice coverage. Significant increases in BrO can also be seen in mid-
latitudes attributable to long-range transport. Clearly, in the atmosphere, spatial and
temporal variations in DF could have a significant impact on the observed BrO distribu-
tion. In a recent application of the model to the tropical Atlantic (O’Brien et al., 2009),15

the model failed to reproduce the high BrO (2–3 ppbv) observed there, which could
be partly explained by the low DF used in the model, as recent observation indicates
that the sea salt bromine near Cape Verde is heavily depleted (Müller et al., 2010).It is
clearly necessary to work towards including a detailed sea salt microphysical-chemical
module to study bromine chemistry at the global scale.20

In the Arctic1X run, the Arctic snow salinity was reduced by a factor of 3.5. Compared
with the BASE run, tropospheric BrO in the Arctic is reduced by up to 50%, but is
still significantly elevated compared with the middle latitudes (or compared with the
OCEAN run). The non-linear response to salinity can be explained (see Sect. 2.4) by
the compensating increases in fine sea salt aerosols production (dry diameter <10 µm).25
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6 Conclusions

Our simulation shows that bromine explosions are consistent with bromine release
in blowing snow events, when additional sea salt aerosols containing Br are created,
leading both to the liberation of more Br− and to more rapid reactivation of gaseous
HBr by heterogeneous reactivation. This blowing-suspension phenomenon can explain5

the bromine source during BEs reasonably well in both magnitude and duration, and
heterogeneous reactions on the sea salt aerosol maintain the high BrO fraction of total
inorganic bromine.

From this analysis, it is possible to predict conditions under which bromine explosion
events may occur. Dry and windy conditions favor a large sublimation rate during10

a blowing event. If this occurs over a region with high-saline-contaminated snow, a
bromine explosion is likely. Since tropospheric ozone amounts are significantly affected
by this mechanism, this constitutes a potential influence of changing climatic conditions
on oxidizing capacity.

Note that snow packs generally will also constitute a bromine source, but they are15

likely modest relative to blowing snow. Similarly, frost flowers growing on young sea ice
have very high salinity, but only a small fraction can form fine sea salt with ddry <10µm
after wind-crop. Actually, it is more likely that frost flowers affect bromine chemistry in
an indirect pathway by contaminating the adjacent snow; the resultant salinity will be
lower and could substantially favor fine sea salt production.20

While we have demonstrated that blowing snow is a plausible mechanism by which
bromine may be released into the atmosphere, it is clear that further work is required.
In particular, our sensitivity experiments show that further information on both DF and
snow salinity is required. As Earth System models are developed further, more detailed
process-based treatments of the bromine release need to be developed.25
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Déry, S. J. and Yau, M. K.: A bulk blowing snow model, Bound.-Lay. Meteorol., 93, 237–251,5

1999.
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Table 1. Model experiments.

Experiments Brief descriptions

BASE Includes bromine sources from blowing snow sea
salt, open ocean sea salt and bromocarbons

OCEAN Includes only bromine sources from open ocean sea
salt and bromocarbons

noHET Same as BASE run, but with heterogeneous
Reactions (R1)–(R3) switched off

noBr All bromine chemistry switched off
2XDF Same as BASE, but with doubled DF for

blowing-snow sea salt
Arctic1X Same as BASE, but in Arctic, the snow salinity on

young sea ice is set to the same as in the Antarctic

All experiments include a one-year model spin-up run. The second year results are used for
analysis.
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Fig. 1. Comparisons of simulated tropospheric column BrO from OCEAN run (a, d) and BASE
run (b, e) and retrieved tropospheric column BrO (c, f) in March and September of year 1998,
respectively. Note that the model data represent BrO during daytime (local 9 a.m.–3 p.m.). The
unit of column BrO is 1×1013 molecules/cm2.
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Interactive DiscussionFig. 2. Comparisons of BASE run (a) and retrieved (b) tropospheric column BrO in March of
1997.
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Fig. 3. Comparisons of modeled tropospheric column BrO (red) with GOME total vertical col-
umn BrO (black) and retrieved tropospheric BrO (yellow) over Barrow (73◦ N, 157◦ W) for year
1998. The model experiments, the OCEAN and noHET runs, are shown in blue and green
lines, respectively. The inset plot (left) shows solar zenith angle (SZA) of the model output (red)
and satellite observation (black); the inset plot (right) shows the relationship and regression
coefficient between retrieved and model tropospheric columnBrO (BASE run).
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Fig. 4. Comparisons of modeled and retrieved tropospheric column BrO over 8 sites in the
NH and SH polar region for year 1998. The inset plot shows the relationship and regression
coefficient between the retrieved and modeled tropospheric BrO. The model results are from
BASE run. 8159
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Fig. 4. Continued.
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Fig. 5. Zonal mean fields of BrO and ozone loss due to bromine chemistry. Zonal daily aver-
aged BrO (pptv) in (a) March and (b) September of 1998, from BASE run, with plotted inter-
val of 1 pptv at BrO>1 pptv. The calculated ozone reductions (%) due to bromine explosion
(snow source) are show in (c) and (d) (calculated according to formula: (BASE run – OCEAN
run)/(BASE run)×100%) with interval of 2% at ozone loss>−2%. The ozone reductions due
to all bromine sources are shown in e) and f) by comparing BASE run with noBr run (calculated
according to formula (BASE run – noBr run)/(noBr run)×100%).
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Fig. 6. Percentage contribution of blowing snow source to the simulated tropospheric column
BrO in (a) March and (b) September of 1998. Values are calculated according to the formula:
(BASE run – OCEAN run)/(BASE run)×100%).
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(b) Modelled surface O3 around Lat=74.7N
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(c) Modelled surface BrO aroundt Lat=69.2N
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(d) Modelled surface O3 around Lat=69.2N
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Fig. 7. BASE run surface BrO and ozone mixing ratios at different longitude locations along
two model latitudes of 74.7◦ N (a, b) and 69.2◦ N (c, d) in March 1998.
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Fig. 8. Tropospheric column BrO in March (a) and Septerber (b) from 2XDF run. The unit of
column BrO is 1×1013 molecules/cm2.
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